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Abstract

We present a comprehensive study of a managed basis trading strategy implemented via the
BasisOS protocol. This strategy captures funding fees using a dual-position approach that si-
multaneously maintains a long exposure in the spot market and a short exposure on perpetual
decentralized exchanges. In contrast to centralized mechanisms (e.g., Ethena[1]), which empha-
size total value locked (TVL) and rely on custodian-based systems, the BasisOS vault framework
focuses on yield optimization in exotic markets (e.g., Perp DEXs, memecoins) with an emphasis
on transparent execution. In this article, we detail the system architecture, introduce rebalanc-
ing algorithms, discuss risk management, outline vault capacity estimation methods, and report
extensive simulation and backtesting results. Our analysis demonstrates that precise rebalancing
combined with robust risk controls is critical for competitive performance in volatile markets.

1 Introduction

Basis trading strategies exploit funding rate im-
balances by simultaneously maintaining a spot
position and a corresponding hedge (short) posi-
tion in the perpetual futures market. The pri-
mary objective is to capture periodic funding
fee premiums while maintaining a target leverage
Ltarget. This target leverage governs the vault’s
utilization and is confined between a minimum
leverage Lmin (ensuring optimal funding collec-
tion) and a maximum leverage Lmax (limiting risk
exposure).

L =
|PositionSize|
MarginBalalnce

, Ltarget ∈ (Lmin, Lmax)

Market Overview

Exotic markets typically offer elevated funding
rates compared to blue-chip markets, albeit with

increased volatility and liquidity challenges. We
quantify these funding rates using two indices
(see [4]):

• Average Funding Rate Index (AFRI):

AFRI =
1

N

N∑
i=1

ri,

where ri is the annualized daily funding rate
of the i-th market and N is the total number
of markets.

• Weighted Funding Rate Index
(WFRI):

WFRI =

∑N
i=1 (ri ·OIi)∑N

i=1OIi
,

where OIi denotes the daily average open
interest of the i-th market.
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We further define the difference between these
indices as

d = AFRI−WFRI.

For instance, over the past year we have ob-
served:

• Hyperliquid: d ≈ 14.7%

• GMX V2: d ≈ 26.2%

These observations suggest that lower-capacity
perpetuals (e.g., on GMX V2) may yield higher
returns. Figures 1 and 2 illustrate historical com-
parisons of AFRI and WFRI for GMX V2 and
Hyperliquid, respectively.

Figure 1: Historical AFRI vs. WFRI for GMX
V2. The green line represents the difference, ∆ =
AFRI−WFRI.

2 System Architecture

The BasisOS protocol is implemented as a coor-
dinated framework of four core smart contracts:

1. Vault Contract: Centralizes deposit and
withdrawal management under the ERC-
4626 standard [7].

2. Strategy Contract: Oversees portfolio re-
balancing and maintains overall state man-
agement.

Figure 2: Historical AFRI vs. WFRI for Hyper-
liquid. The green line represents the difference,
∆ = AFRI−WFRI.

3. Position Manager Contract: Manages
hedge positions by interfacing with Perp
DEXs (e.g., Hyperliquid) using a request-
response protocol.

4. Spot Manager Contract: Executes spot
market trades to ensure alignment with
hedge positions.

Off-chain keepers support each Position Manager
by executing market requests, ensuring timely in-
teraction with the corresponding Perp DEX.

3 Execution Framework

To overcome the limitations of naive execution,
our managed strategy incorporates an off-chain
Operator. This Operator continuously moni-
tors market conditions and initiates transactions
when spreads are favorable, thereby minimizing
execution costs and slippage. Key features in-
clude:

• Cost Efficiency: The Operator minimizes
transaction fees and slippage by guarantee-
ing a fixed execution spread.

• Enhanced Spot Execution: Integration
with aggregation routers (e.g., 1Inch) im-
proves trade execution in the spot market.
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• Batch Processing: Simultaneous deposits
and withdrawals can be batched, thereby
capturing arbitrage premiums.

• Algorithmic Timing: The Operator algo-
rithmically optimizes execution to take ad-
vantage of favorable market conditions.

Challenges

Despite its advantages, this approach introduces
certain challenges:

• Trustworthiness: The off-chain Operator
requires robust safeguards to mitigate trust
issues.

• Capital Utilization Delays: Processing
delays in deposits may result in temporarily
suboptimal capital utilization.

• Non-Atomic Withdrawals: Withdrawals
are processed non-atomically, necessitating
additional mechanisms (e.g., Claim func-
tions) to ensure consistency.

Despite these challenges, our managed approach
significantly enhances capacity and operational
efficiency.

4 Rebalancing Algorithm

The trading strategy continuously rebalances its
positions to maintain the target leverage Ltarget

amid market fluctuations.

Equity and Target Allocation

Let the total equity E be defined as the sum
of the notional balances in the hedge and spot
markets:

E = Bhedge +Bspot,

where Bhedge and Bspot are the respective bal-
ances. The target allocations are then:

Thedge =
E

1 + Ltarget

, Tspot =
E · Ltarget

1 + Ltarget

.

Rebalancing Triggers

Define the allocation deviations as:

∆spot = Tspot −Bspot, ∆hedge = Thedge −Bhedge.

A rebalancing event is triggered if:

• The deviation in the hedge position exceeds
a preset fraction ϵ of the corresponding spot
target.

• The current leverage Lcurrent falls outside the
interval [Lmin, Lmax].

5 Risk Framework

The vault’s operation is governed by critical risk
parameters that ensure the system’s robustness.
Two key metrics are defined for each asset with
price trajectory P (t).

Margin Treasury

The Margin Treasury (MT ) is defined as the 95th

percentile of the 5-minute price change distribu-
tion where price is a candlestick data per vault’s
asset:

MT = Q
(5m)
0.95

This threshold serves as a primary risk constraint
that must not be breached under normal condi-
tions.

Maximum Leverage

The Risk Maximum Leverage, RLmax, is defined
such that there is only a 1% probability that
an adverse price movement (without rebalanc-
ing) breaches the critical price PMT .
We define PMT as the price at which there re-

mains MT% margin until the liquidation price
on the exchange. In other words, if Pliq denotes
the liquidation price, then

PMT = Pliq ∗MT

Let L(P (t)) denote the function of the leverage

at price P (t), and letQ
(15m)
0.99 be the 99th percentile
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of a 15-minute price change, given that each vault
operates on a 1-minute execution cycle and the
average execution latency is 2 minutes then this
risk parameter takes into account extra execution
delays such as Layer Zero downtimes and etc.
We then define (note that basis strategies hold

short positions)

RLmax = L

(
PMT

1 +Q
(15m)
0.99

)
.

For a detailed derivation of the liquidation for-
mula for Pliq, refer to [3].

Assets Clustering

To calibrate risk parameters—particularly for ex-
otic assets (e.g., memecoins) with limited histor-
ical data—statistical clustering is applied using
Binance candlestick data. Key metrics include:

Q
(5m)
0.99 = Q0.99

(
Phigh

Plow

− 1

)
,

v̄(5m) =
1

N

N∑
i=1

P
(i)
high − P

(i)
low

P
(i)
open

,

v
(5m)
0.99 = Q0.99

(
Phigh − Plow

Popen

)
,

with analogous metrics defined for 15-minute
candles and the maximum leverage reported by
the Hyperliquid exchange. A k-Nearest Neigh-
bors clustering algorithm is used to group assets
based on these features. Figures 3 and 4 illus-
trate the clustering results.

Results

Using historical data and the Hyperliquid liqui-
dation price formula implemented in Fractal[2],
we estimated RLmax for selected tokens. The liq-
uidation price is computed as:

Pliq = P − side ·Mavail

PositionSize
(
1− side

Lmaint

) .
Table 1 summarizes the RLmax values.
As mentioned earlier, there is insufficient his-

torical data for young assets to reliably estimate

Figure 3: Q
(5m)
0.99 versus v̄(5m) across asset clusters.

Figure 4: Maximum leverage versusQ
(15m)
0.99 across

asset clusters.

Ticker RLmax

BTC 13.1
ETH 12.7
SOL 9.4
DOGE 9.0
PEPE 7.5

Table 1: RLmax values for selected tokens derived
from historical data.
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their risk parameters. Therefore, we will use the
risk parameters determined for PEPE as a con-
servative benchmark for all tokens lacking suffi-
cient data to optimize custom risk parameters.

6 Strategy Capacity

Vault capacity is defined by constraints on both
the spot and hedge sides, ensuring that posi-
tions can be closed with acceptable slippage while
maintaining sufficient market depth.

Spot Capacity

Spot capacity is limited by:

1. Liquidity Constraint:

CAPliquidity = Tl × $AvgPoolTVL,

where $AvgPoolTVL is the average total
value locked for the asset and Tl (e.g., 5%)
is the maximum fraction allowed.

2. Slippage Constraint:

slpg
(
CAPslippage

)
< Ts,

where Ts is the maximum permissible slip-
page.

Thus, the effective spot capacity is:

CAPspot = min
(
CAPliquidity, CAPslippage

)
.

Hedge Capacity

Hedge capacity is determined by:

CAPhedge = Toi × $AvgOI,

where $AvgOI is the average open interest and
Toi (e.g., 10%) is the maximum allowed fraction
[5].

Effective Vault Capacity

The overall vault capacity is given by:

Vault Capacity = min
(
CAPspot, CAPhedge

)
.

These constraints are critical to managing liquid-
ity risk in basis trading [6].

7 Simulation

Fractal Framework

The Fractal Framework is a modular research
library designed for developing and backtesting
DeFi strategies. It models financial entities (e.g.,
spot trading, liquidity pools, and hedging) as
state functions, facilitating rigorous simulation
and analysis. Further details are available in the
Fractal documentation [2].

Methodology

Our simulation methodology integrates:

1. Historical-Based Synthetic Data: A
sliding window technique is used to ex-
tract multiple sub-trajectories from histor-
ical data.

2. Monte Carlo Simulations: Synthetic
market scenarios are generated based on his-
torical statistics to introduce stochasticity
and test robustness.

Objective Function

Let {APYi}Ni=1 denote the annualized yields over
N simulation trajectories, with the mean APY
given by

Ā =
1

N

N∑
i=1

APYi.

Let {DDi}Ni=1 denote the maximum drawdowns
observed, and define the 5% quantile drawdown
DDq5 as

DDq5 = inf

{
x ∈ R

∣∣∣∣∣ 1N
N∑
i=1

1{DDi ≤ x} ≥ 0.05

}
.

We penalize drawdown risk with the weight α via

D1 = 1− αDDq5, J1 =
Ā

D1

.

For leverage asymmetry, define

∆max = Lmax − Ltarget, ∆min = Ltarget − Lmin,

5



∆ = |∆max −∆min| ,

and with the weight β let

D2 = 1− β∆.

The overall objective function is then given by

F =
Ā

(1− αDDq5)(1− β∆)
.

8 Results

Simulations were conducted using Binance his-
torical data, covering diverse funding rate
regimes (both positive and negative) and various
market conditions. The time range was chosen
based on the maximum available history. Note
that BTC and ETH used 1-hour candlesticks,
while DOGE and PEPE employed 5-minute can-
dlesticks due to high volatility. In the following
subsections, we present results for BTC, ETH,
DOGE, and PEPE.

The average execution cost per rebalancing
was chosen empirically by evaluating the histor-
ical spreads for these assets and considering the
current fees on platforms such as GMX V2, Hy-
perliquid, Uniswap V2, Uniswap V3, and 1inch.

Asset Execution Cost (%)

BTC 0.2
ETH 0.2
DOGE 0.4
PEPE 0.5

Table 2: Execution cost per rebalancing for dif-
ferent assets.

BTC Results

Figures 5–9 display the BTC objective function
surface, the simulated maximum drawdown dis-
tribution, and the backtesting performance. Ta-
ble 3 lists the top parameter sets.

Figure 5: Objective function FBTC(Ltarget, Lmax)
for BTC.

Figure 6: Simulated 5% quantile of BTC maxi-
mum drawdown, Dq5

BTC.

Figure 7: BTC: Accumulated APY over time.
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Table 3: Top 5 BTC Parameter Sets
Lmin Ltarget Lmax Objective Backtest Acc. PNL Backtest APY Backtest MAX DD Simulated AVG APY
1.0 6.0 11.0 0.0417 13.87% 4.62% -0.25% 4.33%
1.0 5.0 9.0 0.0405 13.55% 4.52% -0.20% 4.22%
1.0 4.0 7.0 0.0392 13.04% 4.34% -0.16% 4.10%
2.0 6.0 10.0 0.0383 13.08% 4.36% -0.24% 4.13%
1.0 3.0 5.0 0.0370 12.52% 4.17% -0.14% 3.89%

Figure 8: BTC: Accumulated Profit and Loss
over time.

Figure 9: BTC: Strategy leverage compared to
target and bounds.

ETH Results

Figures 10–14 present the ETH objective func-
tion, the simulated drawdown distribution, and
the backtesting performance. Table 4 shows the
top parameter sets.

Figure 10: Objective function FETH(Ltarget, Lmax)
for ETH.

DOGE Results

For DOGE, an asset with higher volatility but
substantial liquidity, Figures 15 and 16 show the
objective function surface and the simulated 5%
drawdown distribution. Table 5 lists the top pa-
rameter sets.

PEPE Results

PEPE, an exotic memecoin with substantially
higher volatility, is evaluated next. Figures 20
and 21 display the objective function surface and
the simulated 5% drawdown distribution. Ta-
ble 6 provides the top parameter sets.

7



Table 4: Top 5 ETH Parameter Sets
Lmin Ltarget Lmax Objective Backtest Acc. PNL Backtest APY Backtest MAX DD Simulated AVG APY
1.0 5.0 9.0 0.0369 12.06% 4.02% -1.05% 4.07%
1.0 4.0 7.0 0.0354 11.64% 3.88% -0.95% 3.92%
1.0 3.0 5.0 0.0332 10.61% 3.53% -1.18% 3.66%
2.0 6.0 10.0 0.0321 11.48% 3.82% -1.71% 3.76%
2.0 5.0 8.0 0.0319 11.16% 3.72% -1.64% 3.68%

Table 5: Top 5 DOGE Parameter Sets
MIN LVG TRGT LVG MAX LVG Objective Backtest Acc. PNL Backtest APY Backtest MAX DD Simulated AVG APY

1.0 4.0 7.0 0.0499 4.47% 4.46% -0.74% 5.48%
1.0 3.0 5.0 0.0383 4.80% 4.79% -0.61% 4.54%
1.0 2.0 3.0 0.0347 3.39% 3.38% -0.52% 3.98%
2.0 4.0 6.0 0.0148 1.28% 1.28% -1.82% 1.79%
4.0 5.0 7.0 0.0039 -10.36% -10.34% -11.05% -11.26%

Figure 11: Simulated 5% quantile of ETH maxi-
mum drawdown, Dq5

ETH.

Figure 12: ETH: Accumulated APY over time.

Figure 13: ETH: Accumulated Profit and Loss
over time.

Figure 14: ETH: Strategy leverage compared to
target and bounds.
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Table 6: Top 5 PEPE Parameter Sets
MIN LVG TRGT LVG MAX LVG Objective Backtest Acc. PNL Backtest APY Backtest MAX DD Simulated AVG APY

1.0 3.0 5.0 0.0438 6.21% 6.19% -0.90% 5.16%
1.0 2.0 3.0 0.0308 3.05% 3.04% -1.48% 3.61%
3.0 5.0 6.0 0.0051 -13.60% -13.57% -13.89% -15.02%
3.0 4.0 6.0 0.0047 -12.86% -12.84% -13.14% -13.97%
2.0 4.0 5.0 0.0017 -4.82% -4.81% -6.93% -4.21%

Figure 15: DOGE: Objective function
FDOGE(Ltarget, Lmax).

Figure 16: DOGE: Simulated 5% maximum
drawdown distribution.

Figure 17: DOGE: Accumulated APY (green
line) and Funding Rate APY (blue bars).

Figure 18: DOGE: Accumulated Profit and Loss
over time.
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Figure 19: DOGE: Strategy leverage compared
to target and bounds.

Figure 20: PEPE: Objective function
FPEPE(Ltarget, Lmax).

Figure 21: PEPE: Simulated 5%maximum draw-
down distribution.

Figure 22: PEPE: Accumulated APY (green
line) and Funding Rate APY (blue bars).

Figure 23: PEPE: Accumulated Profit and Loss
over time.
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Figure 24: PEPE: Strategy leverage compared to
target and bounds.

Simulation and Backtest Summary

In summary, simulation results indicate that
more volatile assets yield less optimal parame-
ter solutions due to a restricted leverage range.
For exotic assets, it is crucial to balance the
frequency of rebalancing with maintaining high
vault utilization to achieve high APY. The fol-
lowing table summarizes the final Hyperliquid
backtest results for the 2024–2025 period using
the best parameter sets:

Asset APY (%) Max Drawdown (%)

BTC 21.38 -0.063
ETH 18.37 -0.256
DOGE 27.56 -0.396
PEPE 30.82 -0.507

9 Benchmarks

To evaluate the performance of the BasisOS vault
strategies against existing USD-based DeFi solu-
tions, we conducted comparative backtests over
the same 2024–2025 time horizon. Figures 25
and 26 illustrate the annualized percentage yield
(APY) profiles of:

• BasisOS Optimized Parameters on
Hyperliquid: BTC, ETH, DOGE, and
PEPE.

• USD-Based DeFi Strategies: AAVE
USDC APY, Ethena APY, USDX APY, Re-
solv stUSDr APY, and BasisOS ETH APY.

Figure 25: BasisOS strategies (BTC, ETH,
DOGE, PEPE) backtested on Hyperliquid over
the 2024–2025 period.

Figure 26: Comparison of BasisOS ETH
APY versus leading USD-based DeFi strate-
gies (AAVE USDC, Ethena, USDX, and Resolv
stUSDr) over the 2024–2025 period.

Despite increased volatility, assets like DOGE
and PEPE with optimized capital utilization can
generate superior returns by capturing elevated
funding rates. Both blue-chip assets (such as
BTC and ETH) and memecoins (such as DOGE
and PEPE) that were backtested outperform all
existing benchmarks.
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